Input-output relation and energy efficiency in the neuron with different spike threshold dynamics

نویسندگان

  • Guosheng Yi
  • Jiang Wang
  • Kai Ming Tsang
  • Xile Wei
  • Bin Deng
چکیده

Neuron encodes and transmits information through generating sequences of output spikes, which is a high energy-consuming process. The spike is initiated when membrane depolarization reaches a threshold voltage. In many neurons, threshold is dynamic and depends on the rate of membrane depolarization (dV/dt) preceding a spike. Identifying the metabolic energy involved in neural coding and their relationship to threshold dynamic is critical to understanding neuronal function and evolution. Here, we use a modified Morris-Lecar model to investigate neuronal input-output property and energy efficiency associated with different spike threshold dynamics. We find that the neurons with dynamic threshold sensitive to dV/dt generate discontinuous frequency-current curve and type II phase response curve (PRC) through Hopf bifurcation, and weak noise could prohibit spiking when bifurcation just occurs. The threshold that is insensitive to dV/dt, instead, results in a continuous frequency-current curve, a type I PRC and a saddle-node on invariant circle bifurcation, and simultaneously weak noise cannot inhibit spiking. It is also shown that the bifurcation, frequency-current curve and PRC type associated with different threshold dynamics arise from the distinct subthreshold interactions of membrane currents. Further, we observe that the energy consumption of the neuron is related to its firing characteristics. The depolarization of spike threshold improves neuronal energy efficiency by reducing the overlap of Na(+) and K(+) currents during an action potential. The high energy efficiency is achieved at more depolarized spike threshold and high stimulus current. These results provide a fundamental biophysical connection that links spike threshold dynamics, input-output relation, energetics and spike initiation, which could contribute to uncover neural encoding mechanism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of input energy efficiency in dill (Anethum graveolens L.) farming in Rodehen region

Background & Aim: Energy is one of important debates in agriculture ecology and for this reason; the ratio of output and input energy in different agriculture ecosystems has been calculated. If one can reduce, input energy level into farms through the indices like poisons, fertilization, tractor energy and lab our force. In addition to the net income of the farmers, this issue would play a sign...

متن کامل

Investigation of input energy efficiency in dill (Anethum graveolens L.) farming in Rodehen region

Background & Aim: Energy is one of important debates in agriculture ecology and for this reason; the ratio of output and input energy in different agriculture ecosystems has been calculated. If one can reduce, input energy level into farms through the indices like poisons, fertilization, tractor energy and lab our force. In addition to the net income of the farmers, this issue would play a sign...

متن کامل

Efficient Spike-Coding with Multiplicative Adaptation in a Spike Response Model

Neural adaptation underlies the ability of neurons to maximize encoded information over a wide dynamic range of input stimuli. Recent spiking neuron models like the adaptive Spike Response Model implement adaptation as additive fixed-size fast spike-triggered threshold dynamics and slow spike-triggered currents. Such adaptation accurately models neural spiking behavior over a limited dynamic in...

متن کامل

Action potential initiation in a two-compartment model of pyramidal neuron mediated by dendritic Ca2+ spike

Dendritic Ca2+ spike endows cortical pyramidal cell with powerful ability of synaptic integration, which is critical for neuronal computation. Here we propose a two-compartment conductance-based model to investigate how the Ca2+ activity of apical dendrite participates in the action potential (AP) initiation to affect the firing properties of pyramidal neurons. We have shown that the apical inp...

متن کامل

Nonlinear modeling of neural population dynamics for hippocampal prostheses

Developing a neural prosthesis for the damaged hippocampus requires restoring the transformation of population neural activities performed by the hippocampal circuitry. To bypass a damaged region, output spike trains need to be predicted from the input spike trains and then reinstated through stimulation. We formulate a multiple-input, multiple-output (MIMO) nonlinear dynamic model for the inpu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015